반응형
Interleaving String
Given strings s1, s2, and s3, find whether s3 is formed by an interleaving of s1 and s2.
An interleaving of two strings s and t is a configuration where s and t are divided into n and m substrings respectively, such that:
s = s1 + s2 + ... + snt = t1 + t2 + ... + tm|n - m| <= 1- The interleaving is
s1 + t1 + s2 + t2 + s3 + t3 + ...ort1 + s1 + t2 + s2 + t3 + s3 + ...
Note: a + b is the concatenation of strings a and b.
Example 1:

Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true
Explanation: One way to obtain s3 is:
Split s1 into s1 = "aa" + "bc" + "c", and s2 into s2 = "dbbc" + "a".
Interleaving the two splits, we get "aa" + "dbbc" + "bc" + "a" + "c" = "aadbbcbcac".
Since s3 can be obtained by interleaving s1 and s2, we return true.
Example 2:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false
Explanation: Notice how it is impossible to interleave s2 with any other string to obtain s3.
Example 3:
Input: s1 = "", s2 = "", s3 = ""
Output: true
Constraints:
0 <= s1.length, s2.length <= 1000 <= s3.length <= 200s1,s2, ands3consist of lowercase English letters.
Follow up: Could you solve it using only O(s2.length) additional memory space?
class Solution:
def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
n, m = len(s1), len(s2)
if n + m != len(s3) :
return False
dp = [[False for _ in range(m+1)] for _ in range(n+1)]
dp[0][0] = True
for i in range(n+1) :
for j in range(m+1) :
if i >= 1 and dp[i-1][j] and s1[i-1] == s3[i+j-1] :
dp[i][j] = True
if j >= 1 and dp[i][j-1] and s2[j-1] == s3[i+j-1] :
dp[i][j] = True
return dp[n][m]

이렇게 직접 그려보면 나올것이다. 조건에 대해 다시 한 번 생각해보자. (사실 나도 잘 모르겠다. 스터디에서 물어봐야지)
- 패딩을 했기 때문에 i, j는 1 이상에서 시작해야 한다.
- DP 테이블을 기준으로 직전에 True 라면 (그림에서는 1) 현재 들어온 글씨에 대해 판단을 할 수 있을것이다.
- 현재 글자가 조합된 글자의 순서와 동일하다면, dp[current_i][current_j] = True 처리 한다.
이 조건을 잘 생각해보면 DP 테이블을 False와 True로 채워나갈 수 있을 것이다.
반응형
'알고리즘 스터디' 카테고리의 다른 글
| [Leetcode/파이썬] 20. Valid Parentheses (0) | 2025.10.19 |
|---|---|
| [Leetcode/파이썬] 86. Partition List (0) | 2025.10.19 |
| [Leetcode/파이썬] 209. Minimum Size Subarray Sum (1) | 2025.10.11 |
| [Leetcode/파이썬] 200. Number of Islands (1) | 2025.10.11 |
| [Leetcode/파이썬] 12. Integer to Roman (0) | 2025.10.11 |